Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces

A novel approach for removing any type of additive noise from a grayscale image

P. Bouboulis¹ K. Slavakis², S. Theodoridis¹

¹Department of Informatics and Telecommunications
University of Athens Greece,
²Department of Telecommunications, Science and Technology University of Peloponnese, Greece

25-08-2010

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

• *f*: is the original image.

- *f*: is the original image.
- e: is the additive noise.

- *f*: is the original image.
- e: is the additive noise.
- $\hat{f} = f + e$: is the noisy image.

- *f*: is the original image.
- e: is the additive noise.
- $\hat{f} = f + e$: is the noisy image.
- The objective of the image denoising problem is to estimate the original image f from the noisy one f̂.

Types of Noise

Types of Noise that we typically encounter:

Types of Noise

Types of Noise that we typically encounter:

1 Gaussian noise:
$$p(z) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\mu)^2/(2\sigma^2)}$$

Types of Noise

Types of Noise that we typically encounter:

- **1** Gaussian noise: $p(z) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\mu)^2/(2\sigma^2)}$
- Impulse Noise: $p(z) = P_a$, if z = a, $p(z) = P_b$, if z = b, p(z) = 0 otherwise.

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

Typical Solutions

Median Filter

- Median Filter
- Fourier Analysis

- Median Filter
- Fourier Analysis
- Wavelets

- Median Filter
- Fourier Analysis
- Wavelets
- Partial Differential Equations

 Most known methods are noise specific, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).

- Most known methods are noise specific, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).
- We aim at a noise independent methodology.

- Most known methods are noise specific, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).
- We aim at a noise independent methodology.
- The idea is to express f as a span of some base functions f_i.

- Most known methods are noise specific, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).
- We aim at a noise independent methodology.
- The idea is to express f as a span of some base functions f_i.
- We choose the base functions f_i to belong to a RKHS.

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

Definition of RKHS Why RKHS? Representer Theorer

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set \mathcal{X} (in particular \mathcal{H} is a Hilbert space) for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set \mathcal{X} (in particular \mathcal{H} is a Hilbert space) for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

• For every $x \in \mathcal{X}$, $\kappa(x, \cdot)$ belongs to \mathcal{H} .

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set \mathcal{X} (in particular \mathcal{H} is a Hilbert space) for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

- **①** For every $x \in \mathcal{X}$, $\kappa(x, \cdot)$ belongs to \mathcal{H} .

$$f(x) = \langle f, \kappa(x, \cdot) \rangle_{\mathcal{H}}, \text{ for all } f \in \mathcal{H}, x \in \mathcal{X},$$
 (1)

in particular $\kappa(x, y) = \langle \kappa(x, \cdot), \kappa(y, \cdot) \rangle_{\mathcal{H}}$.

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

• Why are RKHS so useful?

- Why are RKHS so useful?
- The original nonlinear task is transformed into a linear one, which can be solved by employing an easier algebra.

- Why are RKHS so useful?
- The original nonlinear task is transformed into a linear one, which can be solved by employing an easier algebra.
- The main concepts of this procedure can be summarized in the following two steps:

- Why are RKHS so useful?
- The original nonlinear task is transformed into a linear one, which can be solved by employing an easier algebra.
- The main concepts of this procedure can be summarized in the following two steps:
 - Map the finite dimensionality input data from the input space \mathcal{X} into a higher dimensionality (possibly infinite) RKHS \mathcal{H} .

- Why are RKHS so useful?
- The original nonlinear task is transformed into a linear one, which can be solved by employing an easier algebra.
- The main concepts of this procedure can be summarized in the following two steps:
 - Map the finite dimensionality input data from the input space \mathcal{X} into a higher dimensionality (possibly infinite) RKHS \mathcal{H} .
 - Perform a linear processing on the mapped data in \mathcal{H} .

The Kernel Trick

 An alternative way of describing this process is through the popular kernel trick.

The Kernel Trick

- An alternative way of describing this process is through the popular kernel trick.
- "Given an algorithm which is formulated in terms of an inner product, one can construct an alternative algorithm by replacing the inner product with a positive kernel κ ".

Some Kernels used in practice

• Polynomial Kernel $\kappa(x, y) = \langle x, y \rangle^d$

Some Kernels used in practice

- Polynomial Kernel $\kappa(x, y) = \langle x, y \rangle^d$
- Gaussian Kernel $\kappa(x,y) = exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right),\, \sigma>0$

Some Kernels used in practice

- Polynomial Kernel $\kappa(x, y) = \langle x, y \rangle^d$
- Gaussian Kernel $\kappa(x,y) = exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right), \, \sigma > 0$
- Inhomogeneous Polynomial Kernel

$$\kappa(x,y)=(\langle x,y\rangle+c)^d$$

Some Kernels used in practice

- Polynomial Kernel $\kappa(x,y) = \langle x,y \rangle^d$
- Gaussian Kernel $\kappa(x,y) = exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right), \, \sigma > 0$
- Inhomogeneous Polynomial Kernel $\kappa(x, y) = (\langle x, y \rangle + c)^d$
- B_n-Spline of odd order Kernel $\kappa(x,y)=B_{2r+1}(\|x-y\|)$, with $B_n=\bigotimes_{i=1}^n I_{\left[-\frac{1}{2},\frac{1}{2}\right]}$

Outline

- 1 Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- 3 Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

The Representer Theorem

Theorem

Denote by $\Omega:[0,\infty)\to\mathbb{R}$ a strictly monotonic increasing function, by \mathcal{X} a set and by $c:(\mathcal{X}\times\mathbb{R}^2)^m\to\mathbb{R}\cup\{\infty\}$ an arbitrary loss function. Then each minimizer $f\in\mathcal{H}$ of the regularized risk functional

$$c((x_1, y_1, f(x_1)), \dots, (x_N, y_N, f(x_N)) + \Omega(\|f\|_{\mathcal{H}})$$

admits a representation of the form

$$f(x) = \sum_{n=1}^{N} \alpha_n \kappa(x_n, x).$$

Example of the Representer Theorem

Consider the problems

$$\underset{f \in \mathcal{H}}{\text{minimize}} \quad \sum_{n=1}^{N} |f(x_i) - y_i|^2 + \lambda ||f||_{\mathcal{H}}^2$$

Example of the Representer Theorem

Consider the problems

$$\underset{f \in \mathcal{H}}{\text{minimize}} \quad \sum_{n=1}^{N} |f(x_i) - y_i|^2 + \lambda ||f||_{\mathcal{H}}^2$$

$$\underset{f \in \mathcal{H}}{\text{minimize}} \quad \sum_{n=1}^{N} |f(x_i) - y_i| + \lambda ||f||_{\mathcal{H}}^2$$

Example of the Representer Theorem

Consider the problems

$$\underset{f \in \mathcal{H}}{\text{minimize}} \quad \sum_{n=1}^{N} |f(x_i) - y_i|^2 + \lambda ||f||_{\mathcal{H}}^2$$

$$\underset{f \in \mathcal{H}}{\text{minimize}} \quad \sum_{n=1}^{N} |f(x_i) - y_i| + \lambda ||f||_{\mathcal{H}}^2$$

In both cases the minimizer admits the form:

$$f(x) = \sum_{n=1}^{N} \alpha_n \kappa(x_n, x).$$

Theorem

Suppose that in addition to the assumptions of the previous theorem we are given a set of M real-valued functions $\{\psi_p\}_{p=1}^M:\mathcal{X}\to\mathbb{R}$, with the property that the N × M matrix $(\psi_p(x_n))_{n,p}$ has rank M. Then any $f:=\tilde{f}+h$, with $\tilde{f}\in\mathcal{H}$ and $h\in span\{\psi_p\}$, minimizing the regularized risk functional

$$c((x_1, y_1, f(x_1)), \dots, (x_N, y_N, f(x_N)) + \Omega(\|\tilde{f}\|_{\mathcal{H}})$$

admits a representation of the form

$$f(x) = \sum_{n=1}^{N} \alpha_n \kappa(x_n, x) + \sum_{p=1}^{M} \beta_p \psi_p(x).$$

 Typically a RKHS consists of functions that are very smooth.

- Typically a RKHS consists of functions that are very smooth.
- Evidently, one cannot effectively approximate a non-smooth function f as a span of base functions of a specific RKHS.

- Typically a RKHS consists of functions that are very smooth.
- Evidently, one cannot effectively approximate a non-smooth function f as a span of base functions of a specific RKHS.
- The semi-parametric Representer Theorem, may be used to impose non-smoothness through the functions ψ_p .

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

An image is actually a function

An image is actually a function

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

Formulation
Parameter Selection
Experiments

Rectangular area neighborhood

• We are given a noisy image with dimensions $N0 \times M0$

Rectangular area neighborhood

- We are given a noisy image with dimensions N0 × M0
- We move from one pixel to the next taking (for each pixel) a corresponding neighborhood (i.e. a rectangular area).

Rectangular area neighborhood

- We are given a noisy image with dimensions $N0 \times M0$
- We move from one pixel to the next taking (for each pixel) a corresponding neighborhood (i.e. a rectangular area).

Choosing functions to represent edges

• Let \hat{f} be the given "noisy" neighborhood of one pixel with dimensions $N \times M$, i.e. the $\hat{z}_{m,n} = \hat{f}(x_m, y_n)$ for $m = 1, \dots, M, n = 1, \dots, N$, are the given pixel values of the noisy neighborhood.

Choosing functions to represent edges

- Let \hat{f} be the given "noisy" neighborhood of one pixel with dimensions $N \times M$, i.e. the $\hat{z}_{m,n} = \hat{f}(x_m, y_n)$ for $m = 1, \dots, M, \ n = 1, \dots, N$, are the given pixel values of the noisy neighborhood.
- We assume a set of real valued functions ψ_k , k = 1, ..., K defined on \mathbb{R}^2 that satisfy the condition of the semiparametric Representer Theorem.

Choosing functions to represent edges

- Let \hat{f} be the given "noisy" neighborhood of one pixel with dimensions $N \times M$, i.e. the $\hat{z}_{m,n} = \hat{f}(x_m, y_n)$ for $m = 1, \dots, M, n = 1, \dots, N$, are the given pixel values of the noisy neighborhood.
- We assume a set of real valued functions ψ_k , k = 1, ..., K defined on \mathbb{R}^2 that satisfy the condition of the semiparametric Representer Theorem.

The expansion

• Next, we assume for the denoised image f that $f \in \mathcal{F} = \mathcal{H} + h_0 I + \operatorname{span}\{\psi_1, \dots, \psi_K\}$ (where $I \in \mathbb{R}$ stands for the constant function i.e. I(x, y) = 1).

The expansion

- Next, we assume for the denoised image f that $f \in \mathcal{F} = \mathcal{H} + h_0 I + \operatorname{span}\{\psi_1, \dots, \psi_K\}$ (where $I \in \mathbb{R}$ stands for the constant function i.e. I(x, y) = 1).
- Hence f admits the form

$$f = \tilde{f} + h_0 \mathbf{I} + \sum_{k=1}^K \beta_k \psi_k.$$

Optimization

 We solve the following minimization problem for each pixel (using Polyak's Projected Subgradient Method):

where \tilde{f} is the part of the expansion of f that lives on \mathcal{H} .

Applying a version of the semiparametric Representer Theorem we take that *f* admits the form

$$f = \sum_{m=1}^{M} \sum_{n=1}^{N} \alpha_{m,n} \kappa \left((x_m, y_n), (\cdot, \cdot) \right) + h_0 \mathbf{I} + \sum_{k=1}^{K} \beta_k \psi_k.$$

minimize
$$\sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} ||\tilde{f}||_{\mathcal{H}}^2 + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,$$

 Note that the use of I₂ instead of the I₁ norm in the cost function would make the method sensitive to outliers (e.g., impulses).

minimize
$$\sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} ||\tilde{f}||_{\mathcal{H}}^2 + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,$$

- Note that the use of I₂ instead of the I₁ norm in the cost function would make the method sensitive to outliers (e.g., impulses).
- Furthermore, the I_1 norm adds some sort of sparsity to the expansion.

minimize
$$\sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} ||\tilde{f}||_{\mathcal{H}}^2 + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,$$

- Note that the use of I₂ instead of the I₁ norm in the cost function would make the method sensitive to outliers (e.g., impulses).
- Furthermore, the I_1 norm adds some sort of sparsity to the expansion.
- For even more sparse solutions, one may also adopt the l₁ norm for the regularization terms.

In the case of the Gaussian Kernel:

$$\|\tilde{f}\|_{\mathcal{H}} = \int_{\mathcal{X}} \sum_{n} \frac{\sigma^{2n}}{n!2^{n}} (O^{n}\tilde{f}(x))^{2} dx,$$

with $O^{2n} = \Delta^n$ and $O^{2n+1} = \nabla \Delta^n$, Δ being the Laplacian and ∇ the gradient operator.

Thus, we see that the regularization term $\|\tilde{f}\|_{\mathcal{H}}^2$ "penalizes" the derivatives of the minimizer's part that lives on \mathcal{H} .

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

Formulation
Parameter Selection
Experiments

Selection of the parameters λ , μ

• We keep λ constant.

- We keep λ constant.
- The value of μ is adjusted so that:

- We keep λ constant.
- The value of μ is adjusted so that:
 - if we are dealing with a pixel-neighborhood that corresponds to a smooth area, μ is large,

- We keep λ constant.
- The value of μ is adjusted so that:
 - if we are dealing with a pixel-neighborhood that corresponds to a smooth area, μ is large,
 - if we are dealing with a pixel-neighborhood that corresponds to an edge, μ is small,

- We keep λ constant.
- The value of μ is adjusted so that:
 - if we are dealing with a pixel-neighborhood that corresponds to a smooth area, μ is large,
 - if we are dealing with a pixel-neighborhood that corresponds to an edge, μ is small,
 - For "steeper" edges, the value of μ is smaller.

Formulation
Parameter Selection
Experiments

Outline

- Image Denoising
 - The problem
 - Typical Solutions
- Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems
- Sernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments

Formulation
Parameter Selection
Experiments

Gaussian Noise Removal

Figure: (a) Original Image, (b) Original with additive Gaussian Noise - PSNR=18,7146 dB, (c) Wavelet Denoising (BiShrink) - PSNR=29,3536 dB, (d) Kernelised Denoising - PSNR=29,4535 dB

Formulation
Parameter Selection
Experiments

Impulse Noise Removal

Figure: (a) Original Image, (b) Original with additive Impulse Noise - PSNR=12,7562 dB, (c) Wavelet Denoising - PSNR=25,2574 dB, (d) Kernelised Denoising - PSNR=30,1146 dB

Mixed Noise Removal

Figure: (a) Image with additive mixed Noise (Gaussian + Impulse) - PSNR=21 dB, (b) Kernelised Denoising - PSNR=32,28 dB

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:

Independence of the noise statistics.

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:

- Independence of the noise statistics.
- Superior results in the presence of impulse or mixed noise.

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:

- Independence of the noise statistics.
- Superior results in the presence of impulse or mixed noise.
- In the presence of gaussian noise, the kernel based method gives results similar to wavelet-based techniques that require no additional information for the noise statistics (such as BiShrink).

Disadvantages

Disadvantages:

Disadvantages

Disadvantages:

Increased computational complexity.

Disadvantages

Disadvantages:

- Increased computational complexity.
- In the presence of gaussian noise, the cutting edge wavelet-based methods (such as BM3D, BLS-GSM), which require some sort of knowledge of the standard deviation σ, give superior results.

Future Research

Kernel Based processing in the Wavelet Domain.

Future Research

- Kernel Based processing in the Wavelet Domain.
- Applying the kernel-based approach in the context of super-resolution.